文艳伟 讲师

全屏阅读

2014-09-11 22:09:55 作者: 所属分类:教师 阅读:

ywwen

主要经历

  • 2013.6-至今 华中科技大学材料科学与工程学院讲师

  • 2011.7-2013.6 华中科技大学材料科学与工程学院博士后

  • 2006.9-2011.7 武汉大学物理科学与技术学院计算物理学博士

  • 2002.9-2006.7 武汉大学物理科学与技术学院材料物理学士

研究方向

目前研究领域为低维材料及其相关体系的电子、声子、吸附、掺杂等物理化学特性的多尺度模拟,探讨其在纳米电子学、锂电池、储氢、热电等领域的应用; 研究气体小分子在金属氧化物界面的催化反应机制,以及金属-氧化物光催化机制,设计并寻找高效的氧化物光催化材料。具体的研究领域包括:

1. 新型低维碳基材料的设计及其在能源领域的应用

富勒烯、碳纳米管和石墨烯分别是碳基材料的零维、一维和二维结构的典型代表,其中富勒烯和石墨烯的发现诞生了两个诺贝尔奖,它们以其各自的优异性质引起了全世界范围的研究热潮。碳基材料以其多价态、丰富的构型和较轻的质量在能源储存方面有着巨大的优势,在锂电池、储氢等领域有着广泛的应用。目前我们的研究重点为低维碳基复合材料,低维碳基复合材料是指通过低维结构复合,以实现各组分的优势互补,进而设计出具有特定功能的新型碳材料,如储氢材料,锂离子电池电极材料等。

2. 光解水及光催化机制的探索

研究金属氧化物异质界面的光催化机制,为设计高效的光催化材料提供理论基础。通过第一性原理计算结合实验研究了BiClO/BiWO3的异质节的稳定结构和band offset,理论计算表明异质节的形成可以有效地增强界面电子空穴的分离,提高了其光催化效率;研究Fe基二元及三元氧化物光电化学催化性质、机理的研究,结合原子层沉积方法实现高性能光电化学电极的制备。

科研成果

文艳伟博士长期从事计算材料学的研究,熟悉第一性原理计算、分子动力学以及非平衡格林函数法等理论理论和方法,并运用这些方法探索和研究碳材料以及金属氧化物在能源材料以及催化领域的应用,目前已在相关领域的著名期刊如Nat. Commun.,Appl. Phys. Lett., J. Phys. Chem. C, J. Appl. Phys.等上发表SCI论文30余篇。 目前以负责人身份主持国家自然科学青年科学基金1项、中国博士后科学基金1项、华中科技大学自主创新项目1项,参与了国家重大科学研究计划青年科学家专题、教育部创新团队、国家自然科学基金等项目。

近几年论文代表作

  1. Qi Peng, Jun Wang, Yanwei Wen*, Bin Shan, and Rong Chen*, “Surface modification of LaFeO3 by Co-Pi electrochemical deposition as an efficient photoanode under visible light”, RSC Adv., 6, 26192 (2016).

  2. Q.Peng, B.Shan, Y.W.Wen* and R.Chen*, “Enhancedchargetransport of LaFeO3 via transition metal (Mn, Co, Cu) doping for visible light photoelectrochemical water oxidation”, International  Journal of Hydrogen Energy,40, 15423 (2015).

  3. Yanwei Wen, Xiao Liu, Xianbao Duan, Kyeongjae Cho, Rong Chen,* and Bin Shan, “Theoretical Study of Li-Doped sp2−sp3 Hybrid Carbon Network for Hydrogen Storage”, J. Phys. Chem. C, 119, 15831 (2015).

  4. Xiao Liu, Yanwei Wen*, Zhengzheng Chen, Bin Shan, and Rong Chen*, “First-principles study of the sodium adsorption and diffusion on phosphorene”, Phys. Chem. Chem. Phys., 17, 16398 (2015).

  5. Chaoji Chen, Yanwei Wen(等同一作), Xianluo Hu,* Xiulei Ji, Mengyu Yan, Liqiang Mai, Pei Hu, Bin Shan & Yunhui Huang, “Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling”, Nature Communications, 6, 6929 (2015).

  6. X.B. Duan, B. Zhou, R. Chen, H.M. Zhou, Y.W. Wen* and B. Shan*, “Development of Lattice Inversion Modified Embedded Atom Method And Its Applications”, Current Applied Physics, 14, 1794(2014).

  7. Bo Ma, Cheng Gong, Yanwei Wen*, Rong Chen, Kyeongjae Cho and Bin Shan, “Modulation of contact resistance between metal and graphene by controlling the graphene edge, contact area, and point defects: An ab initio study”, J. Appl. Phys., 115, 183708 (2014).

  8. G. Tang, Y.W. Wen(等同一作), A.M. Pang, D.W. Zeng, Y.G. Zhang, S.Q. Tian, B. Shan and C.S. Xie, “Atomic Origins of High Catalytic Activity of ZnO Nanotetropads for Decomposition of Ammonium Perchlorate”, CrysEngComm, 16, 570 (2014).

  9. Y. W. Wen, X. Liu, X.B. Duan, K. Cho, R. Chen, and Bin Shan, “Theoretical Study of sp2?sp3 Hybridized Carbon Network for Li-ion Battery Anode”, J. Phys. Chem. C, 117 (2013).

  10. X. Liu, Y.W. Wen*, Z.Z. Chen, H. Lin, R. Chen, K. Cho, B. Shan*, “Modulation of Dirac points and band-gaps in graphene via periodic fullerene adsorption”, AIP advances, 3, 052126 (2013).

  11. Y.W. Wen, X. Liu, X. Duan, R. Chen, B. Shan, “First-principles study of the structural, energetic and electronic properties of C-20-carbon nanobuds”, Model. Simul. Mater. Sci. Eng. 21, 035006 (2013).

  12. Y.W. Wen, H.J. Liu, L. Pan, X.J. Tan, H.Y. Lv, J. Shi, X.F. Tang, “Reducing the thermal conductivity of silicon by nanostructure Patterning”, Appl. Phys. A. 110, 93-98 (2013).

  13. Y. W. Wen, H. J. Liu, L. Pan, X.J. Tan, H. Y. Lv, J. Shi, X. F. Tang, “A triplet form of (5, 0) carbon nanotube with higher hydrogen storage capacity”, J. Phys. Chem. C 115, 9227 (2011).